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Intense Rayleigh waves produced by the impact of high-velocity liquid jets on brittle 
solids were arranged to interact with well-defined surface flaws of dimensions 50 to 
200/~m. The extent of crack growth was monitored as a function of distance from the 
impact site. It was found that considerable crack growth as well as crack branching 
occurred for cracks parallel to the incident wavefront and little or no growth for orthog- 
onal cracks. The form of the surface wave was monitored using piezoelectric crystals 
attached to the surface. The results are discussed in terms of recent fracture mechanics 
analysis of stress-wave interaction with cracks. The significance of this study to strength 
degradation of brittle bodies subjected to rain-drop impact is pointed out. 

1. Introduction 
The response of brittle solids to transient stress 
pulses resulting from the impact of high-velocity 
solids or liquid drops is of considerable interest 
because of its significance to strength degradation 
and erosion. As the majority of  flaws in brittle 
solids lie in the surface of the material, the inter- 
actions of  these flaws with transient surface waves 
produced by such impacts can play a major role 
in strength degradation. These problems may arise 
in such practical situations as cavitation damage on 
turbines and the damage of brittle materials (e.g. 
forward facing radomes on aircraft) impacted by 
rain drops and small deformable solid particles 
such as plastics. 

There have recently been a number of  papers 
both theoretical and experimental which have 
considered the problem of a tensile stress wave 
interacting with a crack. Theoretical treatments 
of  this problem have been carried out by Sih et  al. 

[1], Thau and Lu [2], and also by Freund [3]. 
Freund has considered the case of  a semi-infinite 
crack whereas Sih et  al. and Thau and Lu con- 
sidered a crack of finite size. 
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The interesting feature to emerge from the 
latter studies is that the stress intensity factor is 
a function of time, the maximum value exceeds 
the quasi-static value by approximately 25%. This 
prediction has been confirmed in principle by the 
recent work of  Kalthoff and Shockey [4] who 
observed the growth of internal penny-shaped 
cracks in polycarbonate subjected to very short 
duration tensile stress pulses. Also Vardar and 
Finnie [5] have studied the fracture produced in 
brittle rocks subjected to short, intense, tensile 
pulses produced by a high-energy electron beam. 

The particular case of  a Rayleigh or surface 
wave incident upon a crack in the surface of a 
semi-infinite solid has received only cursory exami- 
nation. Freund [6] has considered the case of  a 
Rayleigh wave travelling along the crack interface 
and its interaction with the crack tip. However, 
photo-elastic observations of  Rayleigh waves inter- 
acting with narrow slots of  various lengths have 
been carried out by Rhinehardt arld Dally [7]. 
These authors noted that, as well as reflection 
of the surface wave from the slots, a surface wave 
was propagated down the face of the slot, also 
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some mode conversion occurred. Similar obser- 
vations have been made by Bond [8] in a study of 
surface waves interacting with a right-angled corner 
using finite difference techniques. Rhinehardt and 
Dally [7] also observed that the stress field in the 
vicinity of the tip of the slot was a function of the 
ratio of the slot depth to wavelength of the surface 
wave. For flaws approaching a wavelength and 
more in depth, the principle tensile direction was 
almost parallel to the free surface of the plate, 
whereas for small flaws it was normal to the 
surface. Previous studies by Bowden and Field [9] 
and Field [10] have shown that surface waves are 
capable of initiating surface flaws as they traverse 
the surface at distances well away from the impact 
site. They also observed in thin plates concentric 
zones of enhanced microcracking resulting from 
reinforcement of the surface wave with reflec- 
tions of compressional waves from the rear surface 
of the plate. 

More recently, Rickerby [11] has shown that 
the impact of high-velocity water jets, which 
produce short duration surface waves, onto glass 
discs results in a decrease of strength with increas- 
ing velocity. The observed decrease in strength 
was very similar to that reported by Evans [12] 
for strength reduction resulting from Hertzian 
cone crack formation. However, unlike low- 
velocity solid particle impact, the contact time 
and contact pressures involved in water droplet 
or jet impact are still poorly understood. A recent 
review of water droplet impact and of the press- 
ures developed beneath the impact site has been 
given by Adler [13]. A theoretical analysis of the 
stresses produced by a liquid drop on a rigid elastic 
half-space has been carried out by Blowers [14]. 
This treatment considers a uniform pressure over 
the area of contact and the development of the 
stresses in the half space, it enables the magnitude 
of the stresses at any position or time during 
loading to be determined. However, this analysis 
does not incorporate a flow criteria for the fluid 
and subsequent development of the stress field. 
The solutions generated by Blower's analysis have 
been used by Evans and Wilshaw [15] and by 
Adler [13] to explain and predict the regions of 
crack growth resulting from high-velocity impact 
by water drops and plastic spheres. 

The stresses and displacements produced by a 
point, rapidly loading and unloading the surface 
of an elastic half-space, were first examined by 
Lamb [16]. Subsequent theoretical treatments 
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by Peckeris [17] and by Miller and Pursey [18] 
verified Lamb's conclusion that the intensity of 
the surface wave falls off as R-1/2, where R is the 
radial distance from the source. Mooney [19], in 
a recent review of surface waves produced by 
point contact, has generalized the solutions [20] 
to finite contact times for both normal and 
tangential loading. A limited number of exper- 
imental observations have confirmed the theoretical 
treatments of Lamb and subsequent workers. The 
essential prediction of the decrease in the magni- 
tude of the stress with distance was verified by 
Goodier et al. [21]. The form of the stress waves 
produced by a sudden unloading event [22], also 
verifies very well the theoretical productions. Tsai 
and Kolsky [23] have monitored the stress waves 
produced by a ball dropping onto an elastic half- 
space; these are somewhat similar to those predicted 
by Mooney [20]. 

In this paper we present some observations of 
the extent of crack growth produced by high- 
velocity liquid jets. Cracks of well-defined orien- 
tation and direction have been introduced into the 
surface of a large block of glass and the extension 
of these cracks during the stress-wave loading has 
been measured. The form of the stress waves has 
been monitored using piezoelectric crystals for 
both jet and ball impact and very good agreement 
with the predictions of Mooney [19] is found. 

2. Theoretical considerations 
2.1. Impact pressure and time of contact 
A liquid drop or jet on impact initially behaves 
compressibly until release waves from the edge 
reach the centre of contact. Thereafter, flow occurs 
and the pressure is given by the hydrodynamic 
"stagnation" pressure, Po 

Po = �89 V2 (la) 

where p is the density of the liquid and V is the 
velocity of the jet or drop. The initial impact 
pressure, or "water hammer" pressure is given by 

Po = pCV ( lb)  

where C is the velocity of compressive waves in the 
liquid. A more precise expression for the initial 
impact pressure, which takes into account the 
compressibility of the solid under impact as well as 
that of the impinging liquid, is given by 

pCV 
po = 1 + ( p c / o , c , )  ( lc )  



where Ps and Cs are the density and velocity of  
compressive waves in the solid. The distribution 
of normal pressure beneath the area of contact 
has been suggested, as being similar to that 
beneath a sphere [30], and more recently as that 
beneath a cylinder [46], in contact with a flat 
surface. However, the predictions of these two 
pressure distributions are basically different with 
the former, the pressure decreasing to zero at the 
edge whereas the latter predicts a maximum at this 
position. Johnson and Vickers [46] present exper- 
imental evidence, for low-velocity jets, closer to 
the stress distribution beneath a cylinder in 
contact with a flat surface. More recently, an 
experimental and theoretical analysis of  the break- 
up of high-velocity jets by Field and Lesser [47] 
suggests that cavitation occurs near the edge of the 
jet. This phenomena would have the effect of 
locally reducing the density of the jet close to the 
edge and hence the normal impact pressure in 
this region. 

The duration of the "water hammer" pressure 
is determined by the time for release waves to 
travel across the radius of contact and flow to 
occur. In the case of  a cylindrical jet of  water, 
Bowden and Field [9] suggested the time of 
contact is given by 

r ~-- r / C  (2) 

where r is the radius of  the jet at contact. 

2.2. Stress waves  p roduced  
The impact of  a solid or incompressible liquid 
onto an elastic half-space produces dilational, 
shear and Rayleigh surface waves which radiate 
from the impact site. The analytical description 
of the surface waves was first carried out by Lamb 
[16]. Subsequent work by a number of  authors 
(see Mooney [19] for a recent rev iew)has  
extended Lamb's analysis to consider the effect 
of finite contact area, finite loading time, as 
well as tangential loading. For the case of  finite 
contact time and area of contact the behaviour 
close to the contact region is very complicated 
but the far field solutions are very similar to 
those proposed by Lamb [16]. The major differ- 
ence between a step function application of load 
and a Hertzian impact onto an elastic half-space 
is that the latter results in a rounding off  and 
reduction in intensity of  the peaks as well as an 
increase in the temporal duration of the surface 
wave. 

The shear and dilational waves produced by 
the impact are least at the surface where their 
intensities fall off  as R -2, whereas into the bulk 
they fall off as R -1 . The intensity of  the surface 
wave falls off as R -u2 and consequently will be 
of  greatest significance at distances large com- 
pared with the contact diameter. Miller and Pursey 
[18] have calculated the energy radiated by an 
impact onto an elastic half-space and find that 
67% of the dissipated energy is in the Rayleigh 
wave. Mooney [20] has found that the intensity 
of  surface waves was proportional to the pulse 
length T and initial amplitude of the source pulse 
D and may be expressed as 

l o: D R  -u2 T -3/2 (3) 

for detectors that measure horizontal strain. The 
variation of the radial and vertical components of  
stress with depth for a surface wave are shown in 
Fig. 1. It is apparent that the radial component 
changes sign at a depth of approximately ] of  the 
wavelength of the surface stress pulse. 

The form of the radial stress produced by the 
impact of a ball has been calculated by Tsai and 
Kolsky [23]. Mooney [20] has calculated the 
radial strains for a generalized loading which is 
similar to that of  a ball impact. In the solutions 
by both authors there are a number of simplifying 
approximations. Tsai and Kolsky allow for a 
finite contact area and time of duration but keep 
the contact diameter constant throughout the 
contact. Mooney on the other hand only considers 
an ideal point contact but allows both an impulsive 
loading as well as a more realistic loading history. 
The forms of the radial strain as predicted by Tsai 
and Kolsky, and by Mooney are shown in Fig. 2. 
The solutions presented in Fig. 2 are probably 
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Figure 2 Predicted radial strain of a Rayleigh wave pro- 
duced by: (a) the impact of a 6.35 mm diameter steel 
sphere onto soda-lime glass, 2 cm from the detector with 
a duration of contact 25/~sec, according to Tsai and 
Kolsky [23], (b) for a sphere-like impact of duration 
10 Issec onto granite 30 cm from the detector, according 
to Mooney [20]. 

valid for the far field stress fields, that is at 
distances at least 2 or 3 contact diameters away 
from the axis of  contact. In comparison, Blowers 
[14] has computed the development of the stress 
field resulting from the impact of an incompressible 
fluid onto an elastic half-space with uniform press- 
ure over the expanding area of contact. It is 
possible from this analysis to determine the stress 
at any position in the half-space as a function of 
elapsed time after contact. Adler [13] has recently 
used this analysis to compute the stress fields 
produced by a rain drop in a number of  materials. 
A typical example of  the predicted radial stress 
produced by the impact of a 1.8mm diameter 
water drop onto a glass block at 220msec -1 is 
shown in Fig. 3. Unfortunately, it was not possible 
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Figure 3 The radial stress predicted by Blowers analysis 
for a 1.8 mm droplet impacting soda-lime glass at 220 m 
s e c  t 0.237 ~zsec after contact, according to Adler [ 13]. 
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to generate the stresses at the surface but reason- 
able values are obtained 10 ~tm below the surface, 
and also it is not possible to follow the stress wave 
behaviour after flow has occurred. In the present 
study more emphasis is placed upon the far field 
solutions because they have been measured and 
because it is at distances removed from the contact 
site that crack extension has been studied. 

2.3. D y n a m i c  f r ac tu re  mechan ic s  
The problem of a crack subjected to a plane 
dilational wave has been treated by a number of 
authors [1-3 ,  24]. The essential feature to emerge 
from these studies is that the stress intensity factor 
is initially a function of time. The crack diffracts 
the stress wave and for a finite crack,the maximum 
stress intensity occurs in the time for a Rayleigh 
wave to travel from one crack tip to the other. 
Thereafter, provided the crack remains stationary, 
the stress intensity factor exhibits damped 
oscillatory behaviour about the quasi-static value. 
For a semi-infinite crack the dynamic stress 
intensity factor may be written [5], 

Kd(t ,  0) ~ 1.3o0dt---~-- J . (4) 

For non-step-function stress-wave loadings, the 
stress intensity factor may be determined by a 

method suggested by Freund [6]. He considers the 
case of a large number of infinitesimally small 
step-function loadings and finds that in the limit, 
the stress intensity factor is: 

Ka(t,O) = 1. a ( s ) ( t - - s )  1/2 Is. (5) 

By way of comparison with a square wave, the 
stress intensity factors for a triangular wave of the 
same intensity, as shown in Fig. 4a, are given by: 

q (t, 0) = 2.12 %x/(crt) {k o! 

-H(t--tol2){2(' 113'211 tTo-- 7! J/ (6) 

where H(t  -- to/2) is a Heaviside step function. 
Because the stress intensity factor for stress- 

wave loading of a crack is a function of time, 
there will be some delay before the threshold KIc  
value is achieved. This is shown in Fig. 4b and it 
varies considerably for each loading pulse. For 
the case of  a square pulse, it is easily shown that 
the incubation time, r,  is given by: 
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Figure 4 (a) Stress pulses for which the stress intensity 
factors have been determined. Variation of the stress 
intensity factor with time for, (b) triangular, (c) error 
function. In each figure a' is as predicted by Equation 
13, b' is the dynamic stress intensity factor, and c' the 
quasi-static value. 

1.18KI2c (1 --  v 2) 
= oo~ C (7) 

This expression is similar to one given by Freund 
[6],  who also found that the incubation time was 
a sensitive function of  the angle of  incidence 
between the flaw and the stress wave. If  the crack 
tip stress intensity factor exceeds K i c  the crack 
will extend. Any determination of  the subsequent 
stress intensity factor at the crack tip must 
consider the velocity of  the crack. The dynamic 
stress intensity factor for a crack with velocity, 
V, is given by: 

Ko(t, V) = k(V)Ko(t, 0) (8) 

where k(lO is a modifying factor which varies 
with velocity. Broberg [25] was first to show that  
k(0) = 1, and k(Cr) = 0. A simpler approach is to 
consider the fracture toughness variation with 
velocity, which may be written 

Gd(t,O) - g(V) ~ 1 - -  (9) 

where 
K~c 

Gd(t, l O = - - i f - ( 1  - - v  2) (plane strain). 

It is now possible to determine for a given stress 
wave loading pulse the crack velocity as a function 
of  time. For the case of  a material with its fracture 
toughness independent of  velocity we have 

( V = C r  1 K~]" 

Evans [26] has recently used such an approach to 
predict the extension of  cracks subjected to 
square-wave pulses. A more generalized expression 
which allows the fracture toughness to vary with 
velocity has been considered by Bergkvist [33] 
with particular reference to crack growth in 
PMMA. 

Knowing the variation of  velocity of  the cracks 
with time during the course of  the stress wave 
loading it is possible to determine the growth of  
these cracks, that is 

f? AC = V d t  (11) 
1 
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where the limits, tl and t2 are determined 
when K d equals Kic .  For the case of a triangular 
stress pulse we have from Equations 6, 10 and 11 : 

[ 2K~c ito\21 t~ 

, t  ,o (3 
(12) 

Somewhat similar expressions may be derived for 
sinusoidal or square-pulse loading. 

An alternative method of determing the stress 
intensity factor of  a growing crack has been 
suggested by Eshelby [38]. This analysis was 
developed for mode III cracks but might be 
expected to give reasonable estimates for mode I 
crack growth. Eshelby's approach acknowledges 
the initial size of  the crack and that after crack 
initiation the crack does not know its own length. 
The stress intensity factor is given by: 

( V11/2 
K = l - T !  u (13) 

where a is the initial crack length, and U is given 
by the following series 

U= [l+3(c-at-~k--~]-- ~15 ( ~ - ~ ) 2 + . . . ]  

or may be expressed in terms of elliptical integrals. 
The incubation time for the initiation of a flaw 

is now given by the quasi-static conditions and 
depends only upon the time variation of stress. 
This expression is far more applicable to small 
flaws where the transit time of a Rayleigh pulse 
from one crack tip to the other is very much less 
than the duration of the pulse, that is 2a ~ Cr to. 
However, once the crack has extended a few 
times its initial length self-similar or quasi-steady 
solutions for the stress intensity factor are more 
appropriate (Broberg [25]). The stress intensity 
factor is then given by, again for mode III cracks 

K = mcr(rre)l/2k/E 
where k =  ( 1 - - V 2 / C ] )  and E is a complete 
elliptical integral of  the second kind with modulus 
k. Rose [43] has considered these two approaches 
as well as a quasi-static approach to predict the 
initial motion of a Griffith crack in a uniform 
stress field. The extension of these concepts to a 
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rapidly varying stress field will only be expected to 
give approximate solutions. 

Although the above approach is far more satis- 
factory for small flaws in time varying stress fields 
it is difficult to predetermine the stress intensity 
factor after crack initiation and hence predict 
crack growth. This is because the stress intensity 
factor is a function of crack length and velocity 
of  the crack. 

An approximate method which enables an esti- 
mate of crack growth is to compute the stress 
intensity factor for small increments of time after 
crack initiation and assume constant velocity 
during this time increment. This has been done 
for two particular stress pulses: triangular and error 
function, Fig. 4a. The resulting stress intensity 
factors for a maximum stress of 70 MPa normally 
incident on a flaw of 50/~m in soda-lime glass with 
KIC = 0 . 7 5 M P a m  -3/2, with m in Equation 13 
equal to 1.3 are shown in Fig. 4b to d. Also 
shown are the quasi-static and dynamic stress 
intensity factors. The latter have been multiplied 
by a modifying factor so that KIc  for all three 
approaches occurs at the same time. A more 
detailed discussion of the crack growth resulting 
from these stress pulses is given in Section 5. 

3. Experimental details 
3.1. Specimens 
Commercially available soda-lime glass blocks 
15cm x 15cm x 2.5cm were the main samples 
used in this study. Only plates relatively free of  
scratches and obvious damage were chosen. Prior 
to water-jet impact the glass plates were given an 
etch in a solution of "~ 10% hydrofluoric acid for 
approximately 2 rain. This was done to blunt any 
pre-existing flaws in the glass surface and so 
prevent these flaws growing during their exposure 
to the stress wave. A few additional tests were 
carried out on similar sized blocks of a borosilicate 
glass and a lead glass, as well as thin discs (~ 3 mm 
thick) of  reaction-bonded silicon nitride and a 
10ram thick plate of large grained (~ l cm) 
polycrystalline germanium. Details of all these 
specimens are given in Table I. 

3.2. Flaw in t roduc t i on  
Flaws of well-defined dimensions, orientation and 
position were introduced onto the surface of the 
glass plates with a diamond Vickers pyramid. 
From the corners of the pyramidal impression 
cracks of  highly reproducable dimensions were 



TABLE I 

Material KIc(MN m -3/~ ) Vmax(m sec-~ ) 

Germanium 0.6 
Soda-lime glass 0.75 1520 
Borosilicate glass 0.8 1750 
Lead glass 0.7 720 
Reaction-bonded 2.3 2950 silicon nitride 

generated. The size of the cracks was controlled 
by the load on the Vickers pyramid. The mech- 
anics of  the initiation and development of  these 
cracks has been given elsewhere [28], the cracks 
are very nearly semi-circular across the diagonals 
of  the Vickers impression. It has also been noted 
[29] that a small component of residual stress 
surrounds the residual hardness impression giving 
rise to a residual stress intensity factor at the tips 
of  these cracks. Cracks formed in this way were 
generally arranged so that one crack was parallel 
and one orthogonal to the incident circularly 
expanding stress wave front. However, a few 
cracks were deliberately oriented at some angle 
to the stress wave. 

3.3. Surface-wave generation 
Intense surface waves were produced by the impact 
of  a high-velocity water jet on a glass block. The 
method of water-jet production was the same as 
that employed by Bowden and Brunton [30]. A 
lead slug is fired into a cylinder Filled witb water 
backed by a neoprene rubber seal, a water jet is 
extruded from a narrow orifice at the other end 
of the cylinder at much higher velocity. The 
velocity of the water jet is altered by changing the 
velocity of the lead slug with a gas gun system. 
The production of water jets is highly reproducible 
provided care is taken in filling the cylinder with 
water. In the present study, nozzles producing the 
jets were 1.6, 0.8 and 0.4ram diameter. Most 
results were obtained with the 1.6 mm nozzle. 

3.4. Stress-wave monitoring 
The surface stress waves were monitored with a 
piezoelectric crystal (PZT) mounted on the surface 
of  the glass. The PZT crystal was ~ 4mm x 
4mm x 0.25 mm with a natural resonance fre- 
quency of ~ IOMHz. It was imbedded in a 
mixture of  tungsten powder and Araldite, the 
latter centrifuged onto the large face of the 
crystal, to minimize bending modes and to damp 
the resonance. It was then mounted with the 

narrow edge perpendicular to the incident wave 
front. A more detailed description of these trans- 
ducers and their suitability for detecting surface 
waves has appeared recently by Harnik [34]. The 
output from the PZT crystal was fed directly into 
a storage oscilloscope. Another PZT crystal was 
mounted on the surface of the glass closer to the 
source of the stress wave and this was used to 
trigger the oscilloscope thus enabling the complete 
stress wave to be recorded. The response of the 
transducer and its ability to monitor Rayleigh 
waves was tested by dropping small steel and glass 
balls onto a glass block from different heights 
and distances. 

3.5. Measurement of crack growth 
Shortly after impact with the water jet, the 
specimen was re-etched and the size of  the cracks 
measured. Apart from measuring the length of the 
longest crack, the distance to crack branching, 
total extension of branched cracks, angle between 
the branches and also the size of  the ungrown 
branch of the initial flaw were monitored. The 
subsurface growth of the crack was more difficult 
to determine and only limited measurements were 
made of this aspect of  crack growth. 

4. Observations 
4.1.  Stress waves 
Typical observations of the stress waves produced 
by a small ball impacting onto a glass block at 
different distances from the impact site are shown 
in Fig. 5. These are very similar to those predicted 
by Tsai and Kolsky [23] as shown in Fig. 2a. The 
magnitude and duration of the surface waves 
varied with the size of the ball, density, drop 
height and distance of impact from the PZT 
crystal. The variation of the intensity of the pulses 
produced by a 1.0mm steel ball with distance 
from the detector are shown in Fig. 6. The slope 
of the line through the data is --�89 The form of 
the stress pulses generated by impacting water jets 
are shown in Fig. 7. The stress waves observed are 
very similar to those generated by the steel balls 
in Fig. 5, only the intensity is ~ 1000 times 
greater and duration much shorter. By varying the 
trigger level and sensitivity of the oscilloscope, the 
arrival of  the P wave could be observed. The 
intensity of this wave was orders of  magnitude 
lower than the Rayleigh wave intensity. In a few 
cases stress drops within the near triangular pulses 
were observed (Fig. 7c). A similar observation has 
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Figure 6 Variation of the intensity of the pulse produced 
by a 1.0 mm steel ball dropped from a height of 30 cm 
as a function of distance from the detector. 

been reported by  Tsai and Kolsky [23] and more 

recently by  Knight et  al. [3 t]  when cone cracks 
are formed during impact loading. 

4 .2 .  C r a c k  g r o w t h  
Typical  observations of  the growth of  the inden- 

tat ion flaws subjected to a Rayleighwave produced 
by  a 1.6 mm jet at 550 m sec -1 are shown in Fig. 8. 
In each figure, R is the radial distance from the 
origin of  the impact and the arrow indicates the 
incident direction of  the stress wave. The extent  
of  branching as shown in Fig. 8 was found to be 
strongly dependent  upon the distance from the 
impact site. The growth o f  a random flaw, not 
removed by  the etching process, was similar to 
that  of  the introduced flaws (Fig. 9). The growth 
o f  flaws was normally straight (Fig. 8c), except 
when branching occurred or the initial flaw was 
inclined to the incident stress wave. One example 
of  a flaw inclined at 45 ~ to the incident stress 
wave is shown in Fig. lOa. In this case the extent  
o f  crack growth was slightly less than for those 
cracks parallel to the incident wavefront. For  all 
inclined flaws subsequent growth was parallel to 
the incident wavefront. In addition, the effect of  
two adjacent flaws was studied; a typical  obser- 
vation is shown in Fig. 10b. A more detailed 
discussion of  these latter observations has been 
presented elsewhere [32].  

Measurements of  the extent  of  crack growth 
with the 1 .6mm jet at 550 and 3 0 0 m s e c  -1 at 

Figure 5 Surface waves produced by a 1.0 mm steel ball various distances from the impact site are shown 
impacting soda-lime glass from a height of 30 cm at in Fig. 11 .* The arrows mark the onset of  crack 
(a) 3 cm, (b) 5 cm and (c) 10 cm from the detector, branching at each velocity. The results are some- 

* On this and subsequent figures, different symbols represent results obtained from a repetition of the test. 
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Figure 8 Observation of  the surface flaws after transit of  
a surface wave produced by a 1.6 mm jet at 550 m sec -1 . 
The marker on each micrograph equals 100 #m. 

Figure 7 Surface waves produced by water jets impacting 
a glass block at 350 m sec -1 at a distance of  4.5 cm from 
the detector, (a) 1.6 mm jet, (b) 2.4 ramjet  and (c) 2.4 mm 
jet. 

Figure 9 Comparison of  the growth of  a random flaw 
(a) not  removed by etching with an introduced flaw 
(b), both  5 mm from the impact origin of  a 1.6 mm jet 
at 5 5 0 m s e c  -~. 
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Figure I0 (a) The growth of a flaw inclined at - 4 5  ~ c ~ 2 
to the incident surface wave. (b) The interaction of 
two adjacent flaws. The marker on each micrograph t~ 
equals 100/~m. "~ 

what  exaggerated in the  vic ini ty  o f  30 m m  f rom t~__ 1 - 

because o f  a ref lected longi tudinal  wave origin 

reinforcing the  surface wave in tens i ty  and increas- 

ing crack growth.  

In Fig. 12 the  to ta l  crack growth  is p lo t ted  as 0 "  

a func t ion  o f  dis tance f rom the  impact  origin. 

Fo r  these measurements ,  the  length  o f  all the  

branches  were  added i f  the crack branched.  The  

ef fec t  o f  varying the flaw size was also examined  

; for  flaws at two  di f ferent  distances f rom the  
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Figure 12 The total extent of crack growth for the 1.6 mm 
jet impacting soda-lime glass at 550 and 300 m sec -~ . 
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Figure 11 Growth of 55 t~m flaws as a function of distance 
from the impact site in soda-lime glass when impacted by 
a 1.6 mm jet at 550 and 300 m sec -1 . 
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Figure 13 Crack growth as a function of initial flaw size 
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with the 1.6 mm jet at 550 and 300 m sec -1 . 
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Figure 16 Distance to branching as a function of distance 
from the impact site in soda-lime glass when impacted 
with the 1.6 ramjet  at 550m sec -1 . 

for  larger flaws (Fig. 13). Also m e a s u r e d  were  the  

n u m b e r  o f  c rack  b r a n c h e s  w i t h  d i s t ance  f rom the  

i m p a c t  site for  the  1 . 6 r a m  je t  at  5 5 0 m s e c  -1 

(Fig. 14).  The  onse t  o f  c rack  b r a n c h i n g  occurr ing  

b e t w e e n  18 and  20 m m  f rom the  i m p a c t  site. 

The  g r o w t h  o f  the  i n t r o d u c e d  cracks  pr ior  to  
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Figure 15 Distance to branching as a function of initial 
flaw size in soda-lime glass with 1.6 mm jet at 550 m sec -a . 

1000 

Jet Velocity - 550 msec -~ 

,.~ ~ n  1.6mm Jet ::K o,~, 
v 

500 

- - 0 ~  0-..... 
O ~ S m m  Jet 

q _ ~ 0.4ram o ~ o  

" X ' x ' x - > ~ 2  x ' ~ x o  o o . . . . .  

] I I 

10 20 30 

DistQnce R (mm) 
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Figure 18 Comparison of the extent of crack growth of 
flaws in germanium, reaction-bonded silicon nitride, 
borosilicate, soda-lime and lead glasses when subjected 
to 1.6 mm jet at 300 m sec -~ . 

branching was measured and found to be indepen- 
dent of the initial flaw size (Fig. 15), or distance 
from the impact site (Fig. 16). However, this 
distance is certainly greater than that of the etched 
and presumably rounded flaw in Fig. 9a. The 
growth of flaws subjected to Rayleigh waves 
produced by 1.6, 0.8 and 0.4ram jets at 550m 
sec -1 is compared in Fig. 17. Finally, the extent 
of crack extension produced by a 1.6ram jet at 
300 m sec -1 impacting a borosilicate glass, a lead 
glass, germanium and reaction-bonded silicon 
nitride, is compared with a soda-lime glass (Fig. 18). 

its frequency response. With this limitation and also 
the approximations made above, it is interesting to 
compare the observations of a trace produced by 
the impact of a small steel sphere (Fig. 5), with the 
predicted variation of radial stress by Tsai and 
Kolsky [23] (Fig. 2a). The agreement between the 
present observations and the predictions of Tsai 
and Kolsky is quite good, indicating that in this 
frequency domain the PZT crystal is responding in 
a linear manner. The observations in Fig. 5 and 
others showed no evidence of dispersion of the 
stress wave owing to distance travelled. 

The form of the stress waves produced by the 
water jet are in a slightly higher frequency domain 
than those produced by the impacting sphere. 
However, the oscilloscope output is very similar 
to the variation of radial strain as predicted by 
Mooney [20] (Fig. 2b), for a finite impact loading 
time. The trace is considerably different from that 
predicted by Blowers' analysis (Fig. 3). This may 
be the result of the limited frequency response of 
the PZT crystal to the very high-frequency com- 
ponents in Blowers' solution or to the loss of these 
components owing to scattering by small surface 
defects. Both of these effects would "round off' ' 
the almost square waveform proposed by Blowers. 

The other aspects of the present observations 
of the surface waves produced by ball impacts 
confirm the theoretical predictions. The intensity 
of the stress pulse with distance from the impact 
site (Fig. 6), is as predicted by Equation 3. Similar 
observations have been made by Goodier et  at. 
[21]. At present, we have been unable to calibrate 
the PZT crystal in a satisfactory manner. However, 
it has been possible to infer from the threshold 
distance to crack extension the magnitude of the 
stress pulses generated by the water jets. 

5. Discussion 
5.1. Stress-wave observations 
The voltage output of PZT crystals results from 
changes in radial velocity of the crystal, that is, 
the voltage is proportional to aUr/at. However, 
as pointed out by Goodier et  al. [21], if we 
consider the surface wave as one dimensional, 
than the radial strain er is given by: 

aUr aur 
er ~x (14) 

ar at 

The radial stress Or will vary in a somewhat similar 
manner to er with time. The performance of the 
PZT crystal will be to some extent conditioned by 

5.2. Crack growth 
Prediction of the extent of crack growth resulting 
from the transit of a tensile stress wave across a 
flaw depends upon how well we can define the 
magnitude and duration of the stress pulse. The 
limitations of our ability to determine both these 
factors has already been pointed out. However, an 
independent estimate of the magnitude of the 
stress pulse may be had from the threshold 
distance from the impact site for the initiation of 
crack growth. As pointed out in Section 2, for a 
small crack quasi-static considerations should 
provide a good estimate of the critical stress 
necessary to initiate crack growth. The maximum 
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stress at the point of initiation is then: 

K 
O m -  1.3x/(TrC) 

where normally K = Kic  but for cracks introduced 
by indentations K = Kic  --KR where KR "" 0.3Kic. 
K R is a residual stress intensity factor owing to 
the residual stress field about the permanent hard- 
ness impression [29]. On subsequent crack 
extension the stress intensity resulting from the 
permanent impression decreases as (Co~C)  3n  . 

Following the analysis presented in Section 2, 
the extent of crack growth for the three jet sizes 
studied 1.6, 0.8 and 0.4ram has been computed. 
This was done by considering the duration of the 
surface-water pulses to be 1.0, 0.5 and 0.25 psec, 
respectively, for the three jets. Crack growth as a 
function of  the critical distance was determined 
for a triangular pulse and an error function-type 
pulse, as shown in Fig. 4a. The growth of the cracks 
was predicted using quasi-static, quasi-steady and 
an expression given by Eshelby, Equation 13. The 
stress pulses were subdivided into many intervals 
and during each interval the stress intensity 
factor was computed. The crack velocity was 
determined from the stress intensity factor using 
an expression given by Kerkhoff and Richter [40], 

V = Vo(1--K~c]K2), 

where V 0 = 1520 m sec -1 for soda-lime glass. This 
expression for crack velocity is found to fit data 
for soda-lime glass very well. It is very similar to 
the theoretical expression for crack velocity 
(Equation 10), except that Cr is replaced by Vo. 
The predictions according to the above theories 
with and without consideration of the indentation 
stresses are shown in Fig. 19a and b. The inden- 
tation stress significantly increases the threshold 
distance for crack extension as well as the form of 
the crack extension versus distance curve. The 
predictions for both the triangular pulse and error 
function pulse are in the form of upper and lower 
limits as determined by quasi-static and Eshelby's 
expression, Equation 13, respectively. Quasi- 
steady estimates of crack growth were found to lie 
between these two limffs, but closer to the lower 
limit. The difference between the triangular and 
error function expressions occurs because the time 
for crack initiation for the latter near the threshold 
stress is less than for a triangular pulse. 

The extent of  crack growth predicted by the 
dynamic analysis, for the same values of maximum 

tensile stress, was at least five times greater than 
observed even with the largest crack introduced. 
More realistic values could be obtained if it was 
assumed that crack initiation only occurred if 
the stress intensity factor exceeded a value in 
excess of KIC. That is, for a dynamically loaded 
crack K I D > K I c .  Some justification for this 
assumption comes from the recent work of 
Mendiratta e t  al. [48]. These authors found that 
for beams of  silicon nitride, pre-notched with a 
Knoop indenter, the critical stress intensity when 
dynamically loaded exceeded KIC. The predic- 
tions resulting for two different values of  KID , 
and with the condition for crack arrest as Kic  , are 
shown in Fig. 19A. 

The ratio of the threshold distances may be 
estimated in two ways. Following Mooney [20], 
Equation 3, the magnitude of the Rayleigh wave is 
related to the duration of the pulse. That is, a is 
the jet diameter r. An alternative expression, similar 
to a function of  quasi-static Hertzian analysis is, 

or the threshold distances are dependent upon, 2r, 
the diameter of the contact area of the jet on the 
surface which is related to the diameter of the jet. 
That is, the ratio of the threshold distances should 
be 4 : 2 : 1  for the 1.6, 0.8 and 0.4ram jets. 
Similarly for the same jet at two different 
velocities, the ratio of  the threshold distances 
should vary as the ratio of the velocities squared. 
This is consistent with observations of  the threshold 
distance for the 300msec -1 1.6ram jet (Fig. 11), 
and a similar threshold for the 0 .4mm jet at 
550msec -1 (Fig. 17). The observations of  the 
threshold distance as a function of jet diameter 
(Fig. 17), support the simple quasi-static approxi- 
mation for the magnitude of the stress rather than 
the expression given by Mooney [20]. 

Observations of  crack growth in different 
materials resulting from a 1.6 mmjet  at 300 m sec -1 
(Fig. 18), show a general similarity. Crack exten- 
sion increases with decrease in distance from the 
impact site. However, upon reaching a critical 
distance (or stress), crack branching occurs and 
thereafter the extent of  crack growth is almost 
independent of  the stress. The total extent of  
crack growth is almost independent of the stress. 
The total extent of  crack growth upon exceeding 
the threshold distance is related to the maximum 
crack velocity of  the material. The maximum 
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crack velocities for the different materials are 
listed in Table I. For the borosflicate and lead 
glasses the maximum values were determined 
from Schardin's [41] observations and relation- 
ship between maximum velocity, Vickers hardness 
and density of  the glass. Branching was very 
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occasionally observed with crack growth in 
germanium and cracks were found to propagate 
along cleavage planes even though they were 
slightly inclined to the stress wavefront. As men- 
tioned above it was not found possible to predict 
the onset of  crack branching although some idea 
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Figure 20 Prediction of crack growth for 50/am flaws 
when the maximum velocity of crack propagation is the 
Rayleigh wave velocity, with and without indentation 
stress. The letters a, b, c, and d indicate the positions 
where the crack velocity exceeds the maximum velocity 
of crack propagation in germanium, borosilicate, soda- 
lime and lead glasses. 

of  the behaviour may be had by using a critical 
velocity criteria. If, instead of Vo equal 1520m 
sec -a in the expression given by Kerkhof and 
Richter [40], one uses Cr for soda-lime glass, then 
the prediction of crack extension versus distance 
is shown in Fig. 20. Also marked are the positions 
where the crack velocity exceeds the terminal 
velocity of the different materials. The positions 
of  the predicted plateau are much higher than 
observed which is as expected considering the 
criteria used together with a disregard of the 
expected increase of the fracture toughness with 
velocity prior to crack branching. However, the 
observations of crack growth in germanium are 
very similar to the predictions of Fig. 20. 

The kink in the crack extension versus distance 
curve is no longer present at the onset of  branching 
if one plots tile total extent of  crack growth 
against distance as shown in Fig. 11. The obser- 
vation is in accord with the concept of strain 
energy of the body in the region of the crack in 
excess of an initial value being converted into new 
crack surface. The strain energy is proportional to 

o 2 and hence to l /R,  which is in agreement 
with the present observations. The observations of 
enhanced crack growth with the 1.6mm jet at 
~ 3 0 m m  from the origin (Fig. 11), are in agree- 
ment with previous observations by Bowden and 
Field [9] and have been explained in terms of 
reinforcement of the surface wave with reflected 
longitudinal and shear waves. This phenomena 
would be expected to become more severe with 
thin plates and may have the effect of  lowering 
the threshold velocity for crack extension. 

5.3. Crack branching 
Previous investigations of  the bifurcation of 
rapidly propagating cracks in brittle materials 
have usually considered tensile loading of beams 
or plates. Under these conditions, the initial crack 
grows some 10 to 50 times its own length before 
the onset of  branching. When branching does 
occur it is usually into only two branches which 
often branch on further growth. Typically the half 
angle between the two branches is ~ 20 ~ in agree- 
ment with a recent theoretical treatment by Bilby 
et at. [35]. The present observations (Fig. 8) 
support this conclusion when only two branches 
are formed; but upon multiple branching the half 
angle between the branches is usually smaller. 

A number of  criteria have been proposed for 
the onset of crack branching. Yoffe [36] found 
that for a crack propagating at a velocity greater 
than half the Rayleigh wave velocity, the maximum 
tensile stress was no longer directly ahead of the 
crack tip. Some support for this mechanism of 
crack branching has recently come from obser- 
vations of  cleavage controlled crack growth in 
quartz [37]. However, for glasses, crack branch- 
ing is observed to occur at or below G/2 .  An 
alternative proposal by Rose [43] is that crack 
branching wilt occur if the fracture toughness 
increases with crack velocity. This concept is not 
considerably different from proposals put forward 
by Eshelby [38] and more recently D6ll [39]. 
Eshelby proposed that if the energy absorbed by 
the moving crack was twice the quasi-static energy 
for crack formation, GIC , then branching would 
occur with a considerable reduction in crack 
speed. That is 

Gb J" 2GIc or Gnb ~ nGic 

where n is the number of crack branches. D/ill 
[39] has modified this criteria in the light of  
experimental evidence to the condition that the 
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absorbed energy exceeds twice the energy to reach 
the maximum crack velocity, that is 

Gb ~ 2Gvmax o r  Gnb >~ nGvmax. 

Using this approach, with a quasi-static estimate 
of  Gb, it is possible to predict the number of 
branches that should be formed as a function of 
distance from the impact site. The quasi-static 
energy absorbed by a crack at branching is 

~2C b 
Gn b cc - -  , s 

where Cb is the crack length at branching and a is 
the maximum tensile stress. As shown in Fig. 16, 
Cb was found to be independent of  the number of 
crack branches, and for a Rayleigh wave the stress 
is proportional to R -1/2. Therefore, the above 
expression reduces to 

Gnb >~ nGvma x o: 1/R. 

That is, the number of crack branches varies 
inversely with the distance from the source. For 
the 550msec -1 jet the onset of crack branching 
occurred at 20 mm from the impact site. It is now 
possible to predict the number of crack branches 
as a function of distance. 

Good agreement is found between predicted 
and observed number of crack branches as shown 
in Fig. 14. 

The present observations that the distance to 
crack branching is independent of stress are 
markedly different from typical observations of 
crack branching resulting from quasi-static loading 
of cracks [44]. Under these conditions the typical 
growth of the initial crack to branching is approxi- 
mately 9 times, the typical mean acceleration rate 
being "~ 4 x 107 msec -2. In the present obser- 
vations, the growth to crack branching is less than 
the original flaw size and is found to be indepen- 
dent of  the stress and initial flaw size. The typical 
mean acceleration rate for these cracks is "" 3 x 
101~ m sec -2 . 

The observations may indicate that the acceler- 
ation rate is too rapid and this may be an additional 
limitation to the extent of  crack growth. Glennie 
and Willis [45] have predicted such behaviour for 
a crack propagating in materials with a Dugdale 
type plastic zone at the crack tip. 

Alternatively, these observations may be inter- 
preted in terms of the stress intensity factor at 
crack initiation being much greater than Kic .  A 
similar phenomena occurs for specimens with a 
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blunt notch wherein the crack initiates with a 
finite velocity [37, 38]. 

5.4. Residual strength 
The residual strength of brittle solids impacted 
with water jets may be determined from the 
analysis presented here. In Figs. 19 and 20, crack 
growth is plotted as a function of critical distance 
Re/R from the impact site. For the case of  50#m 
flaws the residual strength/initial strength is 
proportional to (Co~C) u2 . Again the predictions 

using a quasi-static approach and Equation 13 
provide upper and lower bounds for the predic- 
tion of residual strength of impacted bodies. The 
quasi-static predictions as shown above gave a 
slightly overestimated value and hence might be 
expected to provide a conservative basis for 
evaluating the residual strength. Residual strength 
as a function of normalized velocity is plotted in 
Fig. 21 for the 1.6, 0.8 and 0 .4mm jets. These 
plots were determined from the data generated 
for a 50/am flaw but similar behaviour might be 
expected for different initial flaw sizes. The 
predicted rapid fall off  in strength above the 
threshold velocity, particularly for the 1.6 mm jet, 
is in good agreement with observation by Field 
et al. [42] of residual strength of impacted glass 
discs. The broken lines in Fig. 21 is meant to 
indicate the onset of  branching and its effect on 
the expected residual strength data. Above this 
velocity the longest crack introduced by the water 
jet is very insensitive to jet velocity. 

6. Conclusions 
The present study has been primarily concerned 
with the growth of surface flaws when subjected 
to very short duration Rayleigh waves. The form 

~O 

% 

0 5  

1 2 3 \ 
Figure 21 Prediction of the residual strength of impacted 
glass plates subjected to 1.6, 0.8 and 0.4 mm jets. The 
residual strength is plotted as a fraction of its original 
value and the velocity is normalized to the threshold 
velocity. 



of  the stress waves generated by the impacting 
water jet was monitored using a piezoelectric 
crystal and found to be closer in form to that 
predicted by Mooney [20] than that predicted 
by Blowers analysis [14]. The extent of  growth 
of artificially introduced flaws was studied using 
three different water jet diameters. It was found 
that the observed growth of  these flaws was 
similar to that o f  random surface flaws. The extent 
of  growth was predicted using dynamic, quasi- 
steady and quasi-static estimated values of  the 
stress intensity factor. The quasi-static approach 
was found to provide the most reasonable esti- 
mates when allowance was made for residual 
indentation stresses. Cracks subjected to stresses 
in excess of  a critical value were found to branch 
but unlike previous quasi-static observations the 
growth prior to crack branching was found to be 
independent of  stress or flaw size. This observation 
may agree with a theoretical treatment of  the 
growth of  cracks by Glennie and Willis [45] in 
which the acceleration rate is limited by a small 
plastic zone ahead of  the crack tip. Crack branch- 
ing in conjunction with maximum crack velocity 
was found to provide the limiting conditions for 
the extent of  crack growth beyond the onset of  
branching. Finally, the residual strength o f  
impacted materials as a function of  velocity in 
excess of  a threshold velocity is predicted. 

Whilst it was found that the quasi-static 
approach could be used to give an upper estimate 
of  the crack growth, and hence a conservative 
basis for residual strength determinations, it was 
far from satisfactory in accounting for all the 
observations. In particular, the observation of  the 
independence of  the crack growth on the initial 
flaw size, above a certain stress level or flaw size, 
is a basic contradiction to a quasi-static approach. 

The dynamic fracture mechanics analysis 
tended to predict crack extensions much in excess 
of  the observations. More realistic predictions 
could be obtained by assuming the stress intensity 
factor for crack initiation was significantly in 
excess o f K i c .  
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